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Abstract
This paper is devoted to estimates of the exponential decay of eigenfunctions
of difference operators on the lattice Z

n which are discrete analogs of the
Schrödinger, Dirac and square-root Klein–Gordon operators. Our investigation
of the essential spectra and the exponential decay of eigenfunctions of the
discrete spectra is based on the calculus of pseudodifference operators (i.e.,
pseudodifferential operators on the group Z

n with analytic symbols), and the
limit operators method. We obtain a description of the location of the essential
spectra and estimates of the eigenfunctions of the discrete spectra of the main
lattice operators of quantum mechanics, namely: matrix Schrödinger operators
on Z

n, Dirac operators on Z
3 and square root Klein–Gordon operators on Z

n.

PACS numbers: 63.10.+a, 63.22.Gh
Mathematics Subject Classification: 39A47, 47B39, 81Q10

1. Introduction

Exponential estimates of solutions of elliptic partial differential equations in general, and of
the Schrödinger equation in particular, are a classical and central topic of analysis. There
is an extensive bibliography devoted to this problem (see [1, 2, 10, 12–14], for instance).
Exponential estimates of solutions of pseudodifferential equations are considered in [22, 27,
28, 31, 34, 35]. In [40, 41], the authors proposed a new approach to exponential estimates
for partial differential and pseudodifferential operators which is based on the limit operators
method, as developed in [42].
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We consider difference operators of the form

A =
∑
α∈M

aαVα (1)

acting on the space l2(Zn, C
N) of squared integrable functions on the lattice Z

n with values
in C

N . In (1), M is a finite subset of Z
n, the aα refer to operators of multiplication by

matrix-valued functions in l∞(Zn, C
N×N), and (Vαu)(x) = u(x − α) is the operator of shift

by α ∈ Z
n. The main aim of the present paper is the relation between the location of the

essential spectrum of the operator A and estimates of the exponential decay of eigenfunctions
of discrete spectrum of the operator A. The essential spectrum of operators of the form (1)
and of more general operators, belonging to the Wiener algebra on Z

n, was examined by the
authors in the book [42] by means of the so-called limit operators method, see also the related
papers [37–39].

Spectral problems for difference operators (1) arise in many physical problems. We will
focus our attention on a model from solid state physics, viz. the harmonic vibrations of atoms
of infinite crystals (phonons). First consider the cubic crystal modeled by the lattice Z

n (for
details see [5, chapter 22], [8, chapter 5] and [23, chapter 5]).

Let u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) denote the deviation of the particle located at
x ∈ Z

n from its equilibrium position at the moment t. The equation of harmonic vibrations of
the atomic lattice Z

n can be written as

mü(x, t) = −
∑
γ∈�

aγ (x)(Vγ u)(x, t) + a0(x)u(x, t), t ∈ R, x ∈ Z
n, (2)

where � is the set of the vectors ±γj := (0, . . . ,±1, . . . , 0) with ±1 standing at the j th
position and j = 1, . . . , n. Further, m > 0 is the atomic mass of the particles, aγ (x) =(
a

ij
γ (x)

)3
i,j=1 is the matrix of interaction between the atom located at the point x and its

adjacent atoms at the points x ± γk for k = 1, . . . , n, and a0(x) := diag (a1
0(x), a2

0(x), a3
0(x))

is a diagonal matrix describing the external forces acting on the particle x. We suppose
that m, a

ij
γ and aj belong to l∞(Zn). Under the conditions a

ij
−γ (x) = ā

j i
γ (x + γ ), the a

j

0 are
real-valued functions, and the operator

A = −
∑
γ∈�

aγ Vγ + a0 (3)

is a self-adjoint operator on a Hilbert space l2(Zn, C
3) = l2(Zn) ⊗ C

3. As usual, we will
seek solutions of equation (2) of the form u(x, t) = v(x)e−iωt . For the definition of the
eigen-frequencies ω and normal modes vω of equation (3) we consider the spectral equation

Av = −λv, λ = mω2. (4)

If m, aγ and a0 are independent of x, then the operator A does not have eigenvalues. Then the
spectrum of A is continuous, and it is given by the dispersion equation

det

⎛
⎝∑

γ∈�

aγ eiγ ·ξ − a0 − λE3

⎞
⎠ = 0, ξ ∈ [0, 2π ]3, λ = mω2.

If the matrices a0 and aγ depend on x ∈ Z
n, then the spectral problem (4) turns out to be much

more complicated, since now the spectral properties of the operator A depend essentially on
the structure of the matrices aγ and a0. In particular, there may be a finite or infinite sequence
of eigen-frequencies ω1, ω2, . . . with corresponding normal modes v1(x), v2(x), . . .. Hence,
in this case, equation (2) has solutions of the form uj (x, t) = e−iωj t vj (x) with vj ∈ l2(Zn, C

3).
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We shall see that the vj are actually exponentially decreasing at infinity and we derive estimates
which describe the decrease.

In the simplest case of an isotropic interaction matrix of the form a
ij
γ (x) = b(x)δij where

δij = 1 if i = j and δij = 0 if i �= j (= the Kronecker matrix), the operator A is a diagonal
operator on l2(Zn, R

3) of the form

A =
⎛
⎝b

n∑
j=1

(Vγj
+ V−γj

) + a0

⎞
⎠ E3 (5)

with real-valued functions b and a0 and 3 × 3-identity matrix E3. The operator (5) can be
viewed as the lattice analog of the Schrödinger operator on R

n. Operators of this kind arise
in many other physical problems, for instance, in the tight-binding approximation in solid
state physics (see, for instance, [9, 21, 29, 30]), in the Andersen tight binding localization
problems (see [15, 16, 47, 49] and others), and in the investigation of spectral properties of
carbon nanostructure (see [17] and the literature cited there). Different aspects of the spectral
theory of discrete Schrödinger operators are also considered in [3, 4, 19, 20, 47, 53, 54].

Previously, discrete Dirac operators also attracted much attention. They were used,
e.g., in comparative studies of relativistic and nonrelativistic electron localization phenomena
[6], in relativistic investigations of electrical conduction in disordered systems [46], in the
construction of supertransparent models with supersymmetric structures [50], and in relativistic
tunneling problems [45].

Our approach to study essential spectra and the exponential decay of eigenfunctions is
based on the calculus of pseudodifference operators (i.e., pseudodifferential operators on the
group Z

n) with analytic symbols as developed in [37], and the limit operators method (see
[42] and the references cited there).

The paper is organized as follows. In section 2 we recall some auxiliary facts on the
pseudodifference operators with analytic symbols on Z

n, limit operators, essential spectra and
the behavior of solutions of pseudodifference equations at infinity.

In section 3 we consider the discrete Schrödinger operators on l2(Zn, C
N) of the form

(Hu)(x) =
n∑

k=1

(
Vek

− eiak(x)
)(

V−ek
− e−iak(x)

)
u(x) + 
(x)u(x),

where Vek
is the operator of shift by ek, the ak are real-valued bounded slowly oscillating

functions on Z
n, and 
 is a Hermitian slowly oscillating and bounded matrix function on Z

n.
We show that the essential spectrum spess H of H is the interval

spessH =
n⋃

j=1

[
λinf

j , λ
sup
j + 4n

]
,

where

λinf
j := lim inf

x→∞ λj (
(x)), λ
sup
j := lim sup

x→∞
λj (
(x))

and where λj (
(x)) are the increasingly ordered eigenvalues of the matrix 
(x), i.e.

λ1(
(x)) < λ2(
(x)) < · · · < λN(
(x))

for x ∈ Z
n large enough. Note that spess H does not depend on the exponents ak, and that

there is a gap
(
λ

sup
j + 4n, λinf

j+1

)
in the essential spectrum of H if λ

sup
j + 4n < λinf

j+1.
We also obtain the following estimates of eigenfunctions belonging to points in the discrete

spectrum of H. In each of the cases

3



J. Phys. A: Math. Theor. 42 (2009) 385207 V S Rabinovich and S Roch

• λ ∈ (
λ

sup
j + 4n, λinf

j+1

)
is an eigenvalue of H and

0 < r < cosh−1

(
min

{
λ − λ

sup
j − 2n, λinf

j+1 − λ + 2n
}

2n

)
,

• λ > λ
sup
N + 4n is an eigenvalue of H and

0 < r < cosh−1

(
λ − λ

sup
N − 2n

2n

)
,

• λ < λinf
1 is an eigenvalue of H and

0 < r < cosh−1

(
λinf

1 − λ + 2n

2n

)
,

every λ-eigenfunction u of H has the property that er|x|u ∈ lp(Zn, C
N) for every 1 < p < ∞.

In section 4 we introduce self-adjoint Dirac operators on the lattice Z
3 with variable slowly

oscillating electric potentials. In accordance with the general properties of Dirac operators on
R

3 (see for instance [7, 51]), the corresponding discrete Dirac operator on Z
3 should be a self-

adjoint system of first-order difference operators. We are going to construct three-dimensional
Dirac operators with this property following an idea proposed in [32, 33] for the construction
of Dirac operators on Z. Thus, we let

D := D0 + e
E4, (6)

where

D0 := ch̄dkγ
k + c2mγ 0,

EN is the N × N unit matrix, the γ k with k = 0, 1, 2, 3 refer to the 4 × 4 Dirac matrices, the

dk := I − Vek
, k = 1, 2, 3

are difference operators of the first order, h̄ is Planck’s constant, c is the speed of light, m and
e are the mass and the charge of the electron and, finally, 
 is the real electric potential. The
operator D, acting on l2(Z3, C

4), can be considered as the direct discrete analog of the Dirac
operator on R

3, but note that D is not self-adjoint on l2(Z3, C
4). To force the self-adjointness,

we consider the ‘symmetrization’ D := D0 + e
I of D with

D0 :=
(

0 D0

D∗
0 0

)
, (7)

which acts on l2(Z3, C
8). The operator D is self-adjoint, and

D
2
0 =

(
(h̄2c2� + m2c4)E4 0

0 (h̄2c2� + m2c4)E4

)
,

where h̄2c2� + m2c4 is the lattice Klein–Gordon Hamiltonian with Laplacian

� :=
3∑

k=1

d∗
k dk =

3∑
k=1

(2I − Vek
− V ∗

ek
).

We prove that the essential spectrum of D is the union

spessD = [
e
inf −

√
12h̄2c2 + m2c4, e
sup − mc2

]
∪ [

e
inf + mc2, e
sup +
√

12h̄2c2 + m2c4
]
,

4
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where


inf := lim inf
x→∞ 
(x), 
sup := lim sup

x→∞

(x).

Again we observe that if e
sup − e
inf < 2mc2, then the essential spectrum of D has the gap
(e
sup − mc2, e
inf + mc2).

We also obtain the following estimates of eigenfunctions of the discrete spectrum. Let λ

be a point of the discrete spectrum, and let λ and r > 0 satisfy one of the conditions

• λ ∈ (e
sup − mc2, e
inf + mc2) and

0 < r < cosh−1

(
m2c4 − max{(e
inf − λ)2, (e
sup − λ)2} + 6h̄2c2

6h̄2c2

)
;

• λ > e
sup +
√

12h̄2c2 + m2c4 and

0 < r < cosh−1

(
(e
sup − λ)2 − m2c4 − 6h̄2c2

6h̄2c2

)
;

• λ < e
inf −
√

12h̄2c2 + m2c4 and

0 < r < cosh−1

(
(e
inf − λ)2 − m2c4 − 6h̄2c2

6h̄2c2

)
.

Then every λ-eigenfunction u of the operator D satisfies er|x|u ∈ lp(Z3, C
8) for every

p ∈ (1,∞).
In section 5, we consider the lattice model of the relativistic square root Klein-Gordon

operator as the pseudodifference operator of the form

K :=
√

c2h̄2� + m2c4 + e


on l2(Zn). We determine the essential spectrum of K and obtain exact estimates of the
exponential decay at infinity of eigenfunctions of the discrete spectrum.

2. Pseudodifference operators, essential spectra, and exponential estimates

2.1. Some function spaces

For each Banach space X, B(X) refers to the Banach algebra of all bounded linear operators
acting on X. For 1 � p � ∞, we let lp(Zn, C

N) denote the Banach space of all functions on
Z

n with values in C
N with the norm

‖f ‖p

lp(Zn,CN )
:=

∑
x∈Z

n

‖f (x)‖p

C
N < ∞ if p < ∞,

‖f ‖l∞(Zn,CN ) := sup
x∈ Z

n

‖f (x)‖
C

N < ∞.

The choice of the norm on C
N is not of importance in general; only for p = 2 we choose the

Euclidean norm (such that l2(Zn, C
N) becomes a Hilbert space and B(CN) a C∗-algebra in the

usual way). Given a positive function w on Z
n, which we will call a weight, let lp(Zn, C

N,w)

stand for the Banach space of all functions on Z
n with values in C

N such that

‖u‖lp(Zn,CN ,w) := ‖wu‖lp(Zn,CN ) < ∞.

Similarly, we write l∞(Zn,B(CN)) for the Banach algebra of all bounded functions on Z
n

with values in B(CN) and the norm

‖f ‖l∞(Zn,B(CN )) := sup
x∈Z

n

‖f (x)‖B(CN ) < ∞.

5
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Finally, we call a function a ∈ l∞(Zn,B(CN)) slowly oscillating if

lim
x→∞ ‖a(x + y) − a(x)‖B(CN ) = 0

for every point y ∈ Z
n. We denote the class of all slowly oscillating functions by

SO(Zn,B(CN)) and write simply SO(Zn) in case N = 1.

2.2. Pseudodifference operators

Consider the n-dimensional torus T
n as a multiplicative group and let

dμ :=
(

1

2π i

)n dt1 · . . . · dtn

t1 · . . . · tn
=

(
1

2π i

)n dt

t

denote the corresponding normalized Haar measure on T
n.

Definition 1. Let S(N) denote the class of all functions a : Z
n × T

n → B(CN) with

‖a‖k := sup
(x,t)∈Z

n×T
n,|α|�k

∥∥∂α
t a(x, t)

∥∥
B(CN )

< ∞ (8)

for every non-negative integer k, provided with the convergence defined by the semi-norms
|a|k . To each function a ∈ S(N), we associate the pseudodifference operator

(Op (a)u)(x) :=
∫

T
n

a(x, t)û(t)tx dμ(t), x ∈ Z
n, (9)

which is defined on vector-valued functions with finite support. Here, û refers to the discrete
Fourier transform of u, i.e.,

û(t) :=
∑
x∈Zn

u(x)tx, t ∈ T
n.

We denote the class of all pseudodifference operators by OPS(N).

Pseudodifference operators on Z
n can be thought of as the discrete analog of

pseudodifferential operators on R
n (see for instance [48, 52]); they can be also interpreted as

(abstract) pseudodifferential operators with respect to the group Z
n. For another representation

of pseudodifference operators, we need the operator Vα of shift by α ∈ Z
n, i.e. the operator

Vα on lp(Zn, C
N) which acts via

(Vαu)(x) = u(x − α), x ∈ Z
n.

Then the operator Op (a) can be written as

Op (a) =
∑
α∈Z

n

aαVα, (10)

where

aα(x) :=
∫

T
n

a(x, t)tα dμ(t).

Integrating by parts we obtain

‖aα‖l∞(Zn,B(CN )) � C|a|2(1 + |α|)−2, (11)

whence

‖Op (a)‖W(Zn,CN ) :=
∑
α∈Z

n

‖aα‖l∞(Zn,B(CN )) < ∞. (12)

We thus obtain that the pseudodifference operator Op (a) belongs to the Wiener algebra
W(Zn, C

N) which, by definition, consists of all operators of the form (10) with norm (12). It

6
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is an immediate consequence of this fact that all operators Op (a) in OPS(N) are bounded
on lp(Zn, C

N) for all p ∈ [1,∞]. Moreover, since the algebra W(Zn, C
N) is inverse closed

in B(lp(Zn, C
N)), the spectrum of Op (a) ∈ OPS(N) is independent of the underlying

space lp(Zn, C
N). For details on the Wiener algebra and pseudodifference operators, see

sections 2.5 and 5.1 in [42]. Also the following facts can be found there.
The operator (9) can be also written as

Op(a)u(x) =
∑
y∈Z

n

∫
T

n

a(x, t)tx−yu(y) dμ(t),

which leads to the following generalization of pseudodifference operators. Let a be a function
on Z

n × Z
n × T

n with values in B(CN) which is subject to the estimates

|a|k =: sup
(x,y,t)∈Z

n×Z
n×T

n,|α|�k

∥∥∂α
t a(x, y, t)

∥∥
B(CN )

< ∞ (13)

for every non-negative integer k. LetSd(N) denote the set of all functions with these properties.
To each function a ∈ Sd(N), we associate the pseudodifference operator with double symbol

(Opd (a)u)(x) :=
∑
y∈Z

n

∫
T

n

a(x, y, t)u(y)tx−y dμ(t), (14)

where u : Z
n → C

N is a function with finite support. The right-hand side of (14) has to be
understood as in (5.6) in [42], which is in analogy with the definition of an oscillatory integral
(see [48] and also section 4.1.2 in [42]). The class of all operators of this form is denoted by
OPSd(N).

The representation of operators on Z
n as pseudodifference operators is very convenient

due to the fact that one has explicit formulae for products and adjoints of such operators. The
basic results are as follows (see propositions 5.1.4, 5.1.5 and 5.1.7 in [42]).

Proposition 1. (i) Let a, b ∈ S(N). Then the product Op (a)Op (b) is an operator in
OPS(N), and Op (a)Op (b) = Op (c) with

c(x, t) =
∑
y∈Z

n

∫
T

n

a(x, tτ )b(x + y, τ )τ−y dμ(τ), (15)

with the right-hand side understood as an oscillatory integral.

(ii) Let a ∈ S(N) and consider Op (a) as acting on lp(Zn, C
N) with p ∈ (1,∞). Then the

adjoint operator of Op (a) belongs to OPS(N), too, and it is of the form Op (a)∗ = Op (b)

with

b(x, t) =
∑
y∈Z

n

∫
T

n

a∗(x + y, tτ )τ−y dμ(τ), (16)

where a∗(x, t) is the usual adjoint (i.e., transposed and complex conjugated) matrix.

(iii) Let a ∈ Sd(N). Then Opd (a) ∈ OPS(N), and Opd (a) = Op (a#) where

a#(x, t) =
∑
y∈Z

n

∫
T

n

a(x + y, tτ )τ−ydμ(τ).

7
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2.3. Limit operators and the essential spectrum

Recall that an operator A ∈ B(X) is a Fredholm operator if its kernel ker A = {x ∈ X : Ax =
0} and its cokernel coker A = X/(AX) are finite-dimensional linear spaces. The essential
spectrum of A consists of all points λ ∈ C such that the operator A − λI is not a Fredholm
operator. We denote the (usual) spectrum and the essential spectrum of A by specXA and
spess XA, respectively.

Our main tool to study the Fredholm property is limit operators. The following definition
is crucial in what follows.

Definition 2. Let A ∈ B(lp(Zn, C
N)) with p ∈ (1,∞), and let h : N → Z

n be a
sequence which tends to infinity in the sense that |h(n)| → ∞ as n → ∞. An operator
Ah ∈ B(lp(Zn, C

N)) is called a limit operator of A with respect to the sequence h if

s-limm→∞V−h(m)AVh(m) = Ah and s-limm→∞V−h(m)A
∗Vh(m) = (Ah)∗,

where s-lim refers to the strong limit. Clearly, every operator has at most one limit operator
with respect to a given sequence. We denote the set of all limit operators of A by op(A).

Let aI be the operator of multiplication by the function a ∈ l∞(Zn,B(CN)). A
standard Cantor diagonal argument shows that every sequence h tending to infinity possesses
a subsequence g such that, for every x ∈ Z

n, the limit

lim
m→∞ a(x + g(m)) =: ag(x)

exists. Clearly, ag is again in l∞(Zn,B(CN)). Hence, all limit operators of aI are of the form
agI . In particular, if a ∈ SO(Zn,B(CN)), then it follows easily from the definition of a slowly
oscillating function that all limit operators of aI are of the form agI where now ag ∈ B(CN)

is a constant function.
Let Op (a) ∈ OPS(N), and let h : N → Z

n be a sequence tending to infinity. Then
V−h(m)AVh(m) = Op (am) with am(x) := a(x +h(m), t) . It follows as above that the sequence
h has a subsequence g such that a(x + g(m), t) converges to a limit ag(x, t) for every x ∈ Z

n

uniformly with respect to t ∈ T
n. One can prove that the so-defined function ag belongs to

S(N) and the associated operator Op (ag) is the limit operator of Op (a) with respect to g.
The following theorem, which is theorem 5.2.3 in [42], gives a complete description of

the essential spectrum of pseudodifference operators in terms of their limit operators.

Theorem 1. Let a ∈ S(N). Then, for every p ∈ (1,∞),

spess lp Op (a) =
⋃

Op (ag)∈op(A)

speclr Op (ag) (17)

where r ∈ [1,∞] is arbitrary.

Since speclr Op (ag) does not depend on the underlying space, the essential spectrum
spess lp Op (a) is independent of p ∈ (1,∞). Hence, in what follows we will omit the explicit
notation of the underlying space in the spectrum and the essential spectrum.

2.4. Pseudodifference operators with analytic symbols and exponential estimates of
eigenfunctions

Here we introduce the notation and recall some results from section 5.3 in [42]. For r > 1
let Kr be the annulus {t ∈ C : r−1 < |t | < r}, and let K

n
r be the product Kr × · · · × Kr of n

factors.

8
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Definition 3. Let S
(
N, K

n
r

)
denote the set of all functions

a : Z
n × K

n
r → B(CN)

which are analytic with respect to t in the domain K
n
r and satisfy the estimates

|a|k :=
∑
|α|�k

sup
x∈Z

n,t∈ K
n
r

∥∥∂α
t a(x, t)

∥∥
B(CN )

< ∞

for every non-negative integer k. With every function a ∈ S(N, K
n
r ), we associate a

pseudodifference operator defined on vector-valued functions with finite support via (9),
and we denote the corresponding class of pseudodifference operators by OPS

(
N, K

n
r

)
.

Definition 4. For r > 1, let W
(
K

n
r

)
denote the class of all exponential weights w = exp v,

where v is the restriction onto Z
n of a function ṽ ∈ C(1)(Rn) with the property that, for every

point x ∈ R
n and every j = 1, . . . , n,

−log r <
∂ṽ(x)

∂xj

< log r. (18)

In what follows we will denote both the function ṽ on R
n and its restriction onto Z

n by v.
Note that it is an immediate consequence of definition 4 that if w ∈ W(Kn

r ), then wμ ∈ W
(
K

n
r

)
for every μ ∈ [−1, 1].

Proposition 2. Let A := Op (a) ∈ OPS
(
N, K

n
r

)
and w ∈ W

(
K

n
r

)
. Then the operator

Aw := wAw−1, defined on vector-valued functions with finite support, belongs to the class
OPSd(N), and Aw = Opd (b) with

b(x, y, t) = a(x, e−θw(x,y) · t),

where

e−θw(x,y) · t := (e−θw,1(x,y)t1, e−θw,2(x,y)t2, . . . , e−θw,n(x,y)tn)

and

θw,j (x, y) :=
∫ 1

0

∂v((1 − γ )x + γy)

∂xj

dγ.

Proposition 1 and (15) imply the following theorem.

Theorem 2. Let a ∈ S
(
N, K

n
r

)
and w ∈ W

(
K

n
r

)
. Then Op (a) is a bounded operator on

each of the spaces lp(Zn, C
N,w) with 1 � p � ∞.

Next we consider essential spectra of pseudodifference operators on weighted spaces. Let
a,A and Aw be as in proposition 2. One can easily check that for h ∈ Z

n

V−hAwVh = Opd(bh) with bh(x, y, t) = a(x + h, e−θw(x+h,y+h) · t)).

Let now h : N → Z
n be a sequence tending to infinity. Then there exists a subsequence g of

h such that the limit operator of Aw with respect to g exists and

Ag
w = Opd (bg) with bg(x, y, t) = ag(x, eθ

g
w(x,y) · t), (19)

where

ag(x, t) := lim
m→∞ a(x + g(m), t) (20)

and

θg
w(x, y) := lim

m→∞

∫ 1

0
∇v((1 − γ )x + γy + g(m)) dγ. (21)

9
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The limits in (20) and (21) are understood as pointwise with respect to x, y ∈ Z
n and uniform

with respect to t ∈ T
n.

Theorem 3. Let a ∈ S
(
N, K

n
r

)
and w ∈ W(Kn

r ), set A := Op (a) and Aw := wAw−1, and
consider A as operating from lp(Zn, C

N,w) to lp(Zn, C
N,w) where p ∈ (1,∞). Then

spessOp(a) =
⋃

Opd (bg)∈op(Aw)

specOpd(b
g)

with bg as in (19).

Remark 1. The theorem states that the essential spectrum of an operator in OPS
(
N, K

n
r

)
,

considered as acting on lp(Zn, C
N,w), is independent of p ∈ (1,∞), but it can depend on

the weight in general. But if the weight w = ev has the property that

lim
x→∞ ∇v(x) = 0, (22)

then the symbol a
g
w does not depend on the weight and, hence, the essential spectrum of

Op (a) ∈ B(lp(Zn, C
N,w)) with a ∈ S

(
N, K

n
r

)
is independent both on p ∈ (1,∞) and

on the weight w. Important examples of weights satisfying (22) are the power weights
w(x) = (1 + |x|2)s/2 = e

s
2 log(1+|x|2) with s > 0 and the subexponential weights w(x) = eα|x|β

where α > 0 and β ∈ (0, 1).

The next theorem provides exponential estimates of solutions of pseudodifference
equations.

Theorem 4. Let A = Op(a) ∈ OPS
(
N, K

n
r

)
and w ∈ W

(
K

n
r

)
. Suppose that

limx→∞ w(x) = +∞ and that 0 is not in the essential spectrum of Awμ : lp(Zn, C
N) →

lp(Zn, C
N) for some p ∈ (1,∞) and every μ ∈ [−1, 1]. If u ∈ lp(Zn, C

N,w−1) is a solution
of the equation Au = f with f ∈ lp(Zn, C

N,w), then u ∈ lp(Zn, C
N,w).

Theorem 4 has some important corollaries.

Theorem 5. Let a, A and w be as in the previous theorem, and let λ be an eigenvalue
of A which is not in the essential spectrum of Awμ : lp(Zn, C

N) → lp(Zn, C
N) for some

p ∈ (1,∞) and every μ ∈ [0, 1]. Then every λ-eigenfunction belongs to lp(Zn, C
N,w) for

every p ∈ (1,∞).

Corollary 1. Let A = Op(a) ∈ OPS
(
N, K

n
r

)
and let λ be an eigenvalue of A which is not

in the essential spectrum of A. Then every λ-eigenfunction u = (u1, . . . , uN) satisfies the
sub-exponential estimate

sup|ui(x)| � Ci e−α|x|β , x ∈ Z
n, i = 1, . . . , N (23)

for arbitrary α > 0 and 0 < β < 1.

Proof. Let w(x) = ev(x) where v(x) = α|x|β with α > 0 and 0 < β < 1. Then
limx→∞ ∇v(x) = 0, whence A

g
wμ = Ag for every limit operator Ag. Let λ be an eigenvalue

of A which is not in the essential spectrum of A. Then λ is not in the essential spectrum
of Awμ for every μ ∈ [0, 1]. Hence, by theorem 5, every λ-eigenfunction belongs to each
of the spaces lp(Zn, C

N,w) with p ∈ (1,∞). Applying the Hölder inequality we obtain
estimate (23). �

We are now going to specialize these results to the context of slowly oscillating symbols
and slowly oscillating weights.

10
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Definition 5. The symbol a ∈ S
(
N, K

n
r

)
is said to be slowly oscillating if

lim
x→∞ sup

t∈T
n

‖a(x + y, t) − a(x, t)‖B(CN ) = 0

for every y ∈ Z
n. We write Ssl

(
N, K

n
r

)
for the class of all slowly oscillating symbols and

OPSsl
(
N, K

n
r

)
for the corresponding class of pseudodifference operators.

Definition 6. The weight w = ev ∈ W(Kr ) is slowly oscillating if the partial derivatives ∂v
∂xj

are slowly oscillating for j = 1, . . . , n. We denote the class of all slowly oscillating weights
by Wsl(Kr ).

Example 1. If v(x) = γ |x|, then ∂v(x)

∂xj
= γ

xj

|x| for j = 1, . . . , n. Thus, w := ev is in Wsl(Kr )

if γ < r .

The next theorem describes the structure of the limit operators of the operator Aw =
wAw−1 if A ∈ OPSsl

(
N, K

n
r

)
and w ∈ Wsl(Kr ).

Theorem 6. Let A = Op (a) ∈ OPSsl(N, K
n
r ) and w ∈ Wsl(Kr ). Then the limit operator

A
g
w of Aw with respect to the sequence g tending to infinity exists if the limits

ag(t) = lim
m→∞ a(g(m), t), θg

w = lim
m→∞(∇v)(g(m)) (24)

exist. In this case, it is of the form

Ag
w = Op (cg) with cg(x, t) = ag

(
θg
w · t

)
. (25)

Consequently, if A and w are as in this theorem, then the limit operators A
g
wμ are invariant

with respect to shifts. This fact implies the following explicit description of their essential
spectra. Let

{
λj

(
A

g
wμ

)
(t)

}n

j=1 denote the eigenvalues of the matrix ag

(
θ

g
wμ · t

)
. Then

speclp(Zn,CN )A
g
wμ =

N⋃
j=1

{
λj

(
A

g
wμ

)
(t) : t ∈ T

n and j = 1, . . . , n
}
,

whence

spesslp(Zn,CN )Awμ =
⋃

A
g

wμ∈op(Awμ )

N⋃
j=1

{
λj

(
A

g
wμ

)
(t) : t ∈ T

n and j = 1, . . . , n
}
.

3. Matrix Schrödinger operators

3.1. Essential spectrum

In this section we consider the essential spectrum and the behavior at infinity of eigenfunctions
of general discrete Schrödinger operators acting on u ∈ l2(Zn, C

N) by

(Hu)(x) =
n∑

k=1

(
Vek

− eiak(x)
)(

V−ek
− e−iak(x)

)
u(x) + 
(x), (26)

where ek = (0, . . . , 0, 1, 0, . . . , 0) with the 1 standing at the kth place, the ak ∈ SO(Zn)

are real valued, and 
 ∈ SO(Zn,B(CN)) is Hermitian. The vector a := (a1, . . . , an) is the
discrete analog of the magnetic potential, whereas 
 can be viewed of as a discrete analog
of the electric potential. Since the essential spectrum of H is independent of p ∈ (1,∞), we

11
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consider the case p = 2 only. Note that our assumptions guarantee that H is a self-adjoint
operator on l2(Zn, C

N).
The limit operators Hg of H are of the form

Hg =
n∑

k=1

(
Vek

− eiag

k I
)(

V−ek
− e−iag

k I
)

+ 
gI

=
n∑

k=1

(
2I − e−iag

k V−ek
− eiag

k Vek

)
+ 
gI

with the constant functions

a
g

k = lim
m→∞ ak(x + g(m)) and 
g = lim

m→∞ 
(x + g(m)).

Let U : l2(Zn, C
N) → l2(Zn, C

N) be the unitary operator

(Uu)(x) = e−i〈ag,x〉u(x), ag = (a
g

1 , . . . , ag
n).

Then

U ∗HgU =
n∑

k=1

(
2I − V−ek

− Vek

)
+ 
g.

Further, the operator H ′
g := U ∗HgU is unitarily equivalent to the operator of multiplication

by the function

H̃g(ψ1, . . . , ψn) := 4
n∑

k=1

sin2 ψk

2
+ 
g, ψk ∈ [0, 2π ],

acting on L2([0, 2π ]n, C
N). Hence,

specHg = specH ′
g =

N⋃
j=1

[λj (

g), λj (


g) + 4n],

where the λj (

g) refer to the eigenvalues of the matrix 
g . Applying formula (17) we obtain

spess H =
⋃
g

N⋃
j=1

[λj (

g), λj (


g) + 4n], (27)

where the first union is taken over all sequences g for which the limit operator of H exists. Let
λj (
(x)), j = 1, . . . , N , denote the eigenvalues of the matrix 
(x). We suppose that these
eigenvalues are simple for x large enough and that they are increasingly ordered,

λ1(
(x)) < λ2(
(x)) < · · · < λN(
(x)).

Then one can show that the functions x �→ λj (
(x)) belong to SO(Zn). Let

λinf
j := lim inf

x→∞ λj (
(x)), λ
sup
j := lim sup

x→∞
λj (
(x)).

Since the set of the partial limits of a slowly oscillating function on Z
n is connected for n > 1

(see [42], theorem 2.4.7), we conclude from (27) that

spess H =
N⋃

j=1

[
λinf

j , λ
sup
j + 4n

]
(28)

for n > 1. Note that if λ
sup
j + 4n < λinf

j+1, then there is the gap
(
λ

sup
j + 4n, λinf

j+1

)
in the essential

spectrum of H.

12
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In case n = 1, the set of the partial limits of a slowly oscillating function on Z consists
of two connected components, which collect the partial limits as x → −∞ and x → +∞,
respectively. Accordingly, in this case we set

λ
inf,±
j := lim inf

x→±∞ λj (
(x)), λ
sup,±
j := lim sup

x→±∞
λj (
(x))

and obtain

spessH =
N⋃

j=1

([
λ

inf,−
j , λ

sup,−
j + 4

] ∪ [
λ

inf,+
j , λ

sup,+
j + 4

])
.

3.2. Exponential estimates of eigenfunctions

Our next goal is to apply theorem 4 to eigenfunctions of (discrete) eigenvalues of the
operator H with slowly oscillating potentials. We will formulate the results for n > 1
only; for n = 1 the non-connectedness of the set of the partial limits requires some evident
modifications. According to (28), the discrete spectrum of H is located outside the set
spess H = ⋃N

j=1

[
λinf

j , λ
sup
j + 4n

]
if n > 1.

Let cosh−1 : [1, +∞) → [0, +∞) refer to the function inverse to cosh : [0, +∞) →
[1, +∞), i.e.,

cosh−1 μ = log(μ +
√

μ2 − 1).

Further let Rsl := ⋃
r>1 W

(
K

n
r

)
.

Theorem 7. Let w = ev be a weight in Rsl with limx→∞ v(x) = ∞. Further let λ be an
eigenvalue of H such that λ /∈ spess H and assume that one of the following conditions is
satisfied:

(i) there is a j ∈ {1, . . . , N} such that λ ∈ (
λ

sup
j + 4n, λinf

j+1

)
and

lim sup
x→∞

∣∣∣∣∂v(x)

∂xk

∣∣∣∣ < cosh−1

(
min

{
λ − λ

sup
j − 2n, λinf

j+1 − λ + 2n
}

2n

)
(29)

for every k = 1, . . . , n;

(ii) λ > λ
sup
N + 4n and

lim sup
x→∞

∣∣∣∣∂v(x)

∂xk

∣∣∣∣ < cosh−1

(
λ − λ

sup
N − 2n

2n

)

for every k = 1, . . . , n;

(iii) λ < λinf
1 and

lim sup
x→∞

∣∣∣∣∂v(x)

∂xk

∣∣∣∣ < cosh−1

(
λinf

1 − λ + 2n

2n

)

for every k = 1, . . . , n.
Then every λ-eigenfunction of H belongs to each of the spaces lp(Zn, C

N,w) with
p ∈ (1,∞).

13
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Proof. For μ ∈ [0, 1], let H ′
wμ := wμH ′w−μ. The limit operators H

′g
wμ − λE are unitarily

equivalent to the operator of multiplication by the matrix function

Hg
wμ(ψ) =

⎛
⎝−2

n∑
j=1

cos
(
ψj + iμθ

g

j

)
+ 2n − λ

⎞
⎠ E + 
g

where

ψ = (ψ1, . . . , ψn) ∈ [0, 2π ]n and θ
g

j := lim
m→∞

∂v(g(m))

∂xj

.

Note that

R
(
Hg

wμ(ψ)
) =

⎛
⎝−2

n∑
j=1

cos ψj cosh μθ
g

w,j + 2n − λ

⎞
⎠E + 
g,

where θ
g

w,j := (
∂v
∂xj

)g
. It is easy to check that condition (29) implies that λ /∈ spec H

g
wμ

for every limit operator H
g
wμ of Hwμ and every μ ∈ [0, 1]. Hence, by theorem 5, every

λ-eigenfunction belongs to lp(Zn, C
N,w) for every 1 < p < ∞. �

Corollary 2. In each of the following cases

(i) λ ∈ (
λ

sup
j + 4n, λinf

j+1

)
for some j ∈ {1, . . . , N} and

0 < r < cosh−1

(
min

{
λ − λ

sup
j − 2n, λinf

j+1 − λ + 2n
}

2n

)
,

(ii) λ > λ
sup
N + 4n and 0 < r < cosh−1

( λ−λ
sup
N −2n

2n

)
,

(iii) λ < λinf
1 and 0 < r < cosh−1

( λinf
1 −λ+2n

2n

)
,

every λ-eigenfunction of H belongs to lp(Zn, C
N, er|x|)) for eachp ∈ (1,∞).

Remark 2. In the case of the scalar Schrödinger operator (26) with 
 ∈ SO(Zn), we have

spessH = [
inf,
sup + 4n]

with 
inf = lim infx→∞ 
(x) and 
sup = lim supx→∞ 
(x). If one of the following
conditions holds for an eigenvalue λ of H:

(i) λ > 
sup + 4n and 0 < r < cosh−1
(

λ−
sup−2n
2n

)
, or

(ii) λ < 
inf and 0 < r < cosh−1
(


inf+2n−λ
2n

)
, then every λ-eigenfunction ofH belongs to

lp(Zn, C
N, er|x|) for each p ∈ (1,∞).

4. The discrete Dirac operator

4.1. The essential spectrum

On l2(Z3, C
4), we consider the Dirac operators

D := D0 + e
I and D0 := ch̄dkγ
k + c2mγ 0, (30)

14
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where the γ k , k = 0, 1, 2, 3, refer to the 4 × 4 Dirac matrices, i.e., they satisfy

γ jγ k + γ kγ j = 2δjkE4 (31)

for all choices of j, k = 0, 1, 2, 3 where E4 stands for the 4 × 4 identity matrix. Further,

dk := I − Vek
, k = 1, 2, 3

are difference operators of the first order, h̄ is Planck’s constant, c is the light speed, m and e
are the mass and the charge of the electron, and 
 is the electric potential. We suppose that
the function 
 is real valued and belongs to the space SO(Z3).

It turns out that the operator D is not self-adjoint on l2(Z3, C
4). Therefore we introduce

self-adjoint Dirac operators as the matrix operators

D := D0 + e
I with D0 :=
(

0 D0

D∗
0 0

)
,

acting on the space l2(Z3, C
8) (i.e., I refers now to the identity operator on that space). First

we are going to determine the spectrum of D0. It is

(D0 − λI)(D0 + λI) =
(
L(λ) 0

0 L(λ)

)
(32)

where L(λ) = h̄2c2� + (m2c4 − λ2)I , and

� :=
3∑

k=1

d∗
k dk =

3∑
k=1

(2I − Vek
− V ∗

ek
)

is the discrete Laplacian with symbol

�̂(ϕ) = �̂(ϕ1, ϕ2, ϕ3) =
3∑

k=1

(2 − 2 cos ϕk), ϕk ∈ [0, 2π ].

Similarly, we denote by D̂0(ϕ) and L̂(λ, ϕ) the symbols of the operators D0 and L(λ),
respectively. Then

(D̂0(ϕ) − λE8)(D̂0(ϕ) + λE8) = L̂(λ, ϕ)E8 (33)

with the scalar-valued function

L̂(λ, ϕ) = h̄2c2
3∑

k=1

(2 − 2 cos ϕk) + m2c4 − λ2.

We claim that λ ∈ spec D0 if and only if there exists a ϕ0 ∈ [0, 2π ]3 such that L̂(λ, ϕ0) = 0.
Indeed, let λ ∈ spec D0. Then there exists a ϕ0 ∈ [0, 2π ]3 such that det(D̂0(ϕ0) − λE8) = 0.

Hence by (33) L̂(λ, ϕ0) = 0. Conversely, if L̂(λ, ϕ0) = 0, then it follows from (33) that

(D̂0(ϕ0) − λE8)(D̂0(ϕ0) + λE8) = 0.

Hence, det(D̂0(ϕ0) − λE8) = 0, whence λ ∈ spec D0.
Since the equation L̂(λ, ϕ) = 0 has two branches of solutions (spectral curves), namely

λ±(ϕ) = ±
√

h̄2c2�̂(ϕ) + m2c4, ϕ ∈ [0, 2π ]3,

the spectrum of D0 is the union

specD0 = [−√
12h̄2c2 + m2c4,−mc2

] ∪ [
mc2,

√
12h̄2c2 + m2c4

]
.

Our next goal is to determine the essential spectrum of D = D0 + e
I . All limit operators
of D are of the form D

g = D0 + e
gI where 
g = limj→∞ 
(g(j)) is the partial limit of 
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corresponding to the sequence g : N → Z
3 tending to infinity. By what we have just seen,

this gives

specD
g = [

e
g −
√

12h̄2c2 + m2c4, e
g − mc2]
∪ [

e
g + mc2, e
g +
√

12h̄2c2 + m2c4
]
.

Since spess D = ∪gspec D
g we obtain

spessD = [
e
inf −

√
12h̄2c2 + m2c4, e
sup − mc2

]
∪ [

e
inf + mc2, e
sup +
√

12h̄2c2 + m2c4
]
,

where


inf := lim inf
x→∞ 
(x) and 
sup := lim sup

x→∞

(x).

In particular, if e(
sup − 
inf) < 2mc2, then the interval (e
sup − mc2, e
inf + mc2) is a gap
in the essential spectrum of D.

4.2. Exponential estimates of eigenfunctions

The following is the analog of theorem 7.

Theorem 8. Let λ /∈ spess D be an eigenvalue of D : lp(Z3, C
8) → lp(Z3, C

8) with
p ∈ (1,∞). Assume further that the weight w = ev is in Rsl and that limx→∞ v(x) = ∞. If
one of the conditions

(i) λ ∈ (e
sup − mc2, e
inf + mc2) and, for every j = 1, 2, 3,

lim sup
x→∞

∣∣∣∣∂v(x)

∂xj

∣∣∣∣ < cosh−1

(
m2c4 − max{(e
inf − λ)2, (e
sup − λ)2} + 6h̄2c2

6h̄2c2

)
, (34)

(ii) λ > e
sup +
√

12h̄2c2 + m2c4 and, for every j = 1, 2, 3,

lim sup
x→∞

∣∣∣∣∂v(x)

∂xj

∣∣∣∣ < cosh−1

(
(e
sup − λ)2 − m2c4 − 6h̄2c2

6h̄2c2

)
, (35)

(iii) λ < e
inf −
√

12h̄2c2 + m2c4 and, for every j = 1, 2, 3,

lim sup
x→∞

∣∣∣∣∂v(x)

∂xj

∣∣∣∣ < cosh−1

(
(e
inf − λ)2 − m2c4 − 6h̄2c2

6h̄2c2

)
, (36)

is satisfied, then every λ-eigenfunction of the operator D belongs to lp(Z3, C
8, w) for each

p ∈ (1,∞).

Proof. We will prove the assertion in case condition (i) is satisfied. The other cases follow
similarly. Further, since the essential spectrum of D and the spectra of the associated limit
operators do not depend on p, we can assume that p = 2 in this proof.

Let condition (34) hold, and let λ be an eigenvalue in the gap (e
sup − mc2, e
inf + mc2)

of the essential spectrum. In order to apply theorem 4 to determine the decaying behavior
of the associated eigenfunction uλ, we need estimates of the spectrum of the limit operators
(Dwμ)g of D wμ := wμ

Dw−μ for μ ∈ [0, 1]. The limit operator (wμVek
w−μ)g of wμVek

w−μ

is of the form (
wμVek

w−μ
)g = e−μ( ∂v

∂xk
)g
Vek

.
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Hence,

(Dwμ)g =
3∑

k=1

cγ k
(
I − e−μ( ∂v

∂xk
)g
Vek

)
+ mc2γ 0 + e
gE4, (37)

where
(

∂v
∂xk

)g = limm→∞ ∂v(g(m))

∂xk
.

Let D
′ = D0 − e
I . The identity (37) implies that

(
D

′g
wμ −λI

)(
D

′g
wμ + λI

)
is the diagonal

matrix diag (F, F ) with

F := h̄2c2�
g
wμ + (m2c4 − (e
g − λ)2)I

and

�
g
wμ =

3∑
k=1

(
2I − e−( ∂v

∂xk
)g
Vek

− e( ∂v
∂xk

)g
V ∗

ek

)
.

The operator �
g
wμ is unitarily equivalent to the operator of multiplication by the function

�̂
g
wμ(ϕ) = �̂

g
wμ(ϕ1, ϕ2, ϕ3) =

3∑
k=1

(
2 − 2 cos

(
ϕk + i

(
∂v

∂xk

)g))

acting on the space L2([0, 2π ]3). Note that

R
(
�̂

g
wμ(ϕ)

) = 6 − 2
3∑

j=1

cos ϕk cosh

(
∂v

∂xk

)g

.

Hence, and by condition (34),

R(h̄2c2�̂
g
wμ(ϕ) + m2c4 − (e
g − λ)2) �= 0 (38)

for every sequence g defining a limit operator and for every μ ∈ [0, 1]. The property (38)
implies that λ /∈ spec D

g
wμ for every limit operator D

g
wμ and every μ ∈ [0, 1]. By theorem 4,

every λ-eigenfunction belongs to lp(Z3, C
8, w) for every p ∈ (1,∞). �

For the important case of the symmetric weight w(x) = er|x|, we obtain the following
corollary of theorem 8.

Corollary 3. Let λ be an eigenvalue of D : lp(Z3, C
8) → lp(Z3, C

8). If one of the conditions

(i) λ ∈ (e
sup − mc2, e
inf + mc2) and

0 < r < cosh−1

(
m2c4 + 6h̄2c2 − max{(e
inf − λ)2, (e
sup − λ)2}

6h̄2c2

)
,

(ii) λ > e
sup +
√

12h̄2c2 + m2c4 and

0 < r < cosh−1

(
(e
sup − λ)2 − m2c4 − 6h̄2c2

6h̄2c2

)
,

(iii) λ < e
inf −
√

12h̄2c2 + m2c4 and

0 < r < cosh−1

(
(e
inf − λ)2 − m2c4 − 6h̄2c2

6h̄2c2

)
,

is satisfied, then every λ-eigenfunction of the operator D belongs to lp(Z3, C
8, er|x|) for every

p ∈ (1,∞).
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5. The square-root Klein–Gordon operator

5.1. The essential spectrum

Here we consider the square-root Klein–Gordon operator on l2(Zn), that is the operator

K =
√

c2h̄2� + m2c4 + e
,

where m > 0 is the mass of the particle, h̄ > 0 is Planck’s constant, c > 0 is the light speed,

 ∈ SO(Zn) a scalar potential, and

� =
n∑

j=1

(2I − Vej
− V ∗

ej
)

is the discrete Laplacian on Z
n. The operator K0 :=

√
c2h̄2� + m2c4 is understood as the

pseudodifference operator with symbol

k(τ ) =
√

c2h̄2�̂(τ ) + m2c4 ∈ S,

where �̂(τ ) = ∑n
j=1

(
2 − τj − τ−1

j

)
at τ = (τ1, . . . , τn). Let

�̃(ϕ) := �̂(eiϕ) =
n∑

j=1

(2 − 2 cos ϕj ), ϕ = (ϕ1, . . . , ϕn) ∈ [0, 2π ]n.

Every limit operator of K is unitarily equivalent to an operator of multiplication by a function
of the form

K̃g(ϕ) =
√

c2h̄2�̃(ϕ) + m2c4 + e
g with 
g ∈ R

acting on L2([0, 2π ]n). Thus,

specKg =
⋃
g

[
mc2 + e
g,

√
4nc2h̄2 + m2c4 + e
g

]
,

where the union is taken with respect to all sequences g tending to infinity such that the partial
limit 
g := limm→∞ 
(g(m)) exists. Consequently,

spessK = [
mc2 + e
inf,

√
4nc2h̄2 + m2c4 + e
sup

]
.

5.2. Exponential estimates of eigenfunctions

Theorem 9. Let λ be an eigenvalue of the square-root Klein–Gordon operator K such that
λ /∈ spess K , and let w = ev be a weight in Rsl with limx→∞ v(x) = ∞. If one of the
conditions

(i) λ > e
sup +
√

4nh̄2c2 + m2c4 and

lim sup
x→∞

∣∣∣∣∂v(x)

∂xj

∣∣∣∣ < cosh−1

(
m2c4 − (e
sup − λ)2 + 2nh̄2c2

2nh̄2c2

)
, (39)

(ii) λ < e
inf −
√

4nh̄2c2 + m2c4 and

lim sup
x→∞

∣∣∣∣∂v(x)

∂xj

∣∣∣∣ < cosh−1

(
m2c4 − (e
inf − λ)2 + 2nh̄2c2

2nh̄2c2

)
, (40)

is satisfied, then every λ-eigenfunction of K belongs to lp(Zn, w) for every p ∈ (1,∞).
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Proof. The proof proceeds similarly to the proof of theorem 8. It is based on the following
construction. Let w = ev ∈ Rsl . Then the limit operator K

g
wμ is unitarily equivalent to the

operator of multiplication by the function

K̃
g
wμ(ϕ) =

√
c2h̄2�̃(ϕ + i(∇v))g + m2c4 + e
g

acting on L2([0, 2π ]n. Hence,

Lg
wμ(ϕ, λ): = (

K̃
g
wμ(ϕ) − λ

)(√
c2h̄2�̃(ϕ + i(∇v))g + m2c4 − (e
g − λ)

)
= c2h̄2�̃(ϕ + i(∇v))g + m2c4 − (e
g − λ)2,

and

R
(
Lg

wμ(ϕ, λ)
) = c2h̄2

n∑
j=1

(
2 − cos ϕj cosh

(
∂v

∂xj

)g)
+ m2c4 − (e
g − λ)2.

Note that R(Lg
wμ(ϕ, λ)) �= 0 for every λ satisfying condition (i) or (ii). Hence, λ /∈ spess Kwμ

for every μ ∈ [0, 1]. Thus, by theorem 4, every λ-eigenfunction belongs to the space lp(Zn, w)

for all p ∈ (1,∞). �

Specifying the weight in the previous theorem as w(x) = er|x|, we obtain the following.

Theorem 10. Let λ be an eigenvalue of K such that λ /∈ spess K . If one of the conditions

(i) λ > e
sup +
√

4nh̄2c2 + m2c4] and

0 < r < cosh−1

(
m2c4 − (e
sup − λ)2 + 2nh̄2c2

2nh̄2c2

)
,

(ii) λ < e
inf −
√

4nh̄2c2 + m2c4 and

0 < r < cosh−1

(
m2c4 − (e
inf − λ)2 + 2nh̄2c2

2nh̄2c2

)

is satisfied, then every λ-eigenfunction of K belongs to the space lp(Zn, er|x|) for every
p ∈ (1,∞).
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